Representation Learning for Discovering Phonemic Tone Contours

My paper titled “Representation Learning for Discovering Phonemic Tone Contours” was recently presented at the SIGMORPHON workshop, held concurrently with ACL 2020. This is joint work with Jing Yi Xie and Frank Rudzicz.

Problem: Can an algorithm learn the shapes of phonemic tones in a tonal language, given a list of spoken words?

Answer: We train a convolutional autoencoder to learn a representation for each contour, then use the mean shift algorithm to find clusters in the latent space.

sigmorphon1

By feeding the centers of each cluster into the decoder, we produce a prototypical contour that represents each cluster. Here are the results for Mandarin and Chinese.

sigmorphon2

We evaluate on mutual information with the ground truth tones, and the method is partially successful, but contextual effects and allophonic variation present considerable difficulties.

For the full details, read my paper here!

Explaining chain-shift tone sandhi in Min Nan Chinese

In my previous post on the Teochew dialect, I noted that Teochew has a complex system of tone sandhi. The last syllable of a word keeps its citation (base) form, while all preceding syllables undergo sandhi. For example:

gu5 (cow) -> gu1 nek5 (cow-meat = beef)

seng52 (play) -> seng35 iu3 hi1 (play a game)

The sandhi system is quite regular — for instance, if a word’s base tone is 52 (falling tone), then its sandhi tone will be 35 (rising tone), across many words:

toin52 (see) -> toin35 dze3 (see-book = read)

mang52 (mosquito) -> mang35 iu5 (mosquito-oil)

We can represent this relationship as an edge in a directed graph 52 -> 35. Similarly, words with base tone 5 have sandhi tone 1, so we have an edge 5 -> 1. In Teochew, the sandhi graph of the six non-checked tones looks like this:

teochew-sandhi

Above: Teochew tone sandhi, Jieyang dialect, adapted from Xu (2007). For simplicity, we ignore checked tones (ending in -p, -t, -k), which have different sandhi patterns.

This type of pattern is not unique to Teochew, but exists in many dialects of Min Nan. Other dialects have different tones but a similar system. It’s called right-dominant chain-shift, because the rightmost syllable of a word keeps its base tone. It’s also called a “tone circle” when the graph has a cycle. Most notably, the sandhi pattern where A -> B, and B -> C, yet A !-> C is quite rare cross-linguistically, and does not occur in any Chinese dialect other than in the Min family.

Is there any explanation for this unusual tone sandhi system? In this blog post, I give an overview of some attempts at an explanation from theoretical phonology and historical linguistics.

Xiamen tone circle and Optimality Theory

The Xiamen / Amoy dialect is perhaps the most studied variety of Min Nan. Its sandhi system looks like this:

xiamen-sandhi

Barrie (2006) and Thomas (2008) attempt to explain this system with Optimality Theory (OT). In modern theoretical phonology, OT is a framework that describes how the underlying phonemes are mapped to the output phonemes, not using rules, but rather with a set of constraints. The constraints dictate what kinds of patterns that are considered “bad” in the language, but some violations are worse than others, so the constraints are ranked in a hierarchy. Then, the output is the solution that is “least bad” according to the ranking.

To explain the Xiamen tone circle sandhi, Thomas begins by introducing the following OT constraints:

  • *RISE: incur a penalty for every sandhi tone that has a rising contour.
  • *MERGE: incur a penalty when two citation tones are mapped to the same sandhi tone.
  • DIFFER: incur penalty when a base tone is mapped to itself as a sandhi tone.

Without any constraints, there are 5^5 = 3125 possible sandhi systems in a 5-tone language. With these constraints, most of the hypothetical systems are eliminated — for example, the null system (where every tone is mapped to itself) incurs 5 violations of the DIFFER constraint.

These 3 rules aren’t quite enough to fully explain the Xiamen tone system: there are still 84 hypothetical systems that are equally good as the actual system. With the aid of a Perl script, Thomas then introduces more rules until only one system (the actual observed one) emerges as the best under the constraints.

Problems with the OT explanation

There are several reasons why I didn’t find this explanation very satisfying. First, it’s not falsifiable: if your constraints don’t generate the right result, you can keep adding more and more constraints, and tweak the ranking, until they produce the result you want.

Second, the constraints are very arbitrary and lack any cognitive-linguistic motivation. You can explain the *MERGE constraint as trying to preserve contrasts, which makes sense from an information theory point of view, but what about DIFFER? It’s unclear why base tones shouldn’t be mapped to the same sandhi tone, especially since many languages (like Cantonese) manage fine with no sandhi at all.

Even considering Teochew, which is more closely related to the Xiamen dialect, we see that all three constraints are violated. I’m not aware of any analysis of Teochew sandhi using OT, and it would be interesting to see, but surely it would have a very different set of constraints from the Xiamen system.

Nevertheless, OT has been an extremely successful framework in modern phonology. In some cases, OT can describe a pattern very cleanly, where you’d need very complicated rules to describe them. In that case, the set of OT constraints would be a good explanation for the pattern.

Also, if the same constraint shows up in a lot of languages, then that increases its credibility that it’s a true cross-language tendency, rather than a just a made-up rule to explain the data. For example, if the *RISE constraint shows up in OT grammars for many languages, then you could claim that there’s a general tendency for languages to prefer falling tones over rising tones.

Evidence from Middle Chinese

Chen (2000) gives a different perspective. Essentially, he claims that it’s impossible to make sense of the data in any particular modern-day dialect. Instead, we should compare multiple dialects together in the context of historical sound changes.

The evidence he gives is from the Zhangzhou dialect, located about 40km inland from Xiamen. The Zhangzhou dialect has a similar tone circle as Xiamen, but with different values!

3sandhi

It’s not obvious how the two systems are related, until you consider the mapping to Middle Chinese tone categories:

mc-circle

The roman numerals I, II, III denote tones of Middle Chinese, spoken during ~600AD. Middle Chinese had four tones, but none of the present day Chinese dialects retain this system, after centuries of tone splits and merges. In many dialects, a Middle Chinese tone splits into two tones depending on whether the initial is voiced or voiceless. When comparing tones from different dialects, it’s often useful to refer to historical tone categories like “IIIa”, which roughly means “syllables that were tone III in Middle Chinese and the initial consonant is voiceless”.

It’s unlikely that both Xiamen and Zhangzhou coincidentally developed sandhi patterns that map to the same Middle Chinese tone categories. It’s far more likely that the tone circle developed in a common ancestral language, then their phonetic values diverged afterwards in the respective present-day dialects.

That still leaves open the question of: how exactly did the tone circle develop in the first place? It’s likely that we’ll never know for sure: the details are lost to time, and the processes driving historical tone change are not very well understood.

In summary, theoretical phonology and historical linguistics offer complementary insights that explain the chain-shift sandhi patterns in Min Nan languages. Optimality Theory proposes tendencies for languages to prefer certain structures over others. This partially explains the pattern; a lot of it is simply due to historical accident.

References

  1. Barrie, Michael. “Tone circles and contrast preservation.” Linguistic Inquiry 37.1 (2006): 131-141.
  2. Chen, Matthew Y. Tone sandhi: Patterns across Chinese dialects. Vol. 92. Cambridge University Press, 2000. Pages 38-49.
  3. Thomas, Guillaume. “An analysis of Xiamen tone circle.” Proceedings of the 27th West Coast Conference on Formal Linguistics. Cascadilla Proceedings Project, Somerville, MA. 2008.
  4. Xu, Hui Ling. “Aspect of Chaozhou grammar: a synchronic description of the Jieyang variety.” (2007).

Using Waveform Plots to Improve your Accent, and a Dive into English Phonology

I was born in China and immigrated to Canada when I was 4 years old. After living in Canada for 18 years, I consider myself a native speaker for most purposes, but I still retain a noticeable non-native accent when speaking.

This post has a video that contains me speaking, if you want to hear what my accent sounds like.

It’s often considered very difficult or impossible to change your accent once you reach adulthood. I don’t know if this is true or not, but it sounds like a self-fulfilling prophecy — the more you think it’s impossible, the less you try, so of course your accent will not get any better. Impossible or not, it’s worth it to give it a try.

The first step is identifying what errors you’re making. This can be quite difficult if you’re not a trained linguist — native English speakers will detect that you have an accent, but they can’t really pinpoint exactly what’s wrong with your speech — it just sounds wrong to them.

One accent reduction strategy is the following: listen to a native speaker saying a sentence (for example, in a movie or on the radio), and repeat the same sentence, mimicking the intonation as closely as possible. Record both sentences, and play them side by side. This way, with all the other confounding factors gone, it’s much easier to identify the differences between your pronunciation and the native one.

When I tried doing this using Audacity, I noticed something interesting. Oftentimes, it was easier to spot differences in the waveform plot (that Audacity shows automatically) than to hear the differences between the audio samples. When you’re used to speaking a certain way all your life, your ears “tune out” the differences.

Here’s an example. The phrase is “figure out how to sell it for less” (Soundcloud):

2_.png

The difference is clear in the waveform plot. In my audio sample, there are two spikes corresponding to the “t” sound that don’t appear in the native speaker’s sample.

For vowels, the spectrogram works better than the waveform plot. Here’s the words “said” and “sad”, which differ in only the vowel:

1.png

Again, if you find it difficult to hear the difference, it helps to have a visual representation to look at.


I was surprised to find out that I’d been pronouncing the “t” consonant incorrectly all my life. In English, the letter “t” represents an aspirated alveolar stop (IPA /tʰ/), which is what I’m doing, right? Well, no. The letter “t” does produce the sound /tʰ/ at the beginning of a word, but in American English, the “t” at the final position of a word can get de-aspirated so that there’s no audible release. It can also turn into a glottal stop (IPA /ʔ/) in some dialects, but native speakers rarely pronounce /tʰ/, except in careful speech.

This is a phonological rule, and there are many instances of this. Here’s a simple experiment: put your hand in front of your mouth and say the word “pin”. You should feel a puff of air in your palm. Now say the word “spin” — and there is no puff of air. This is because in English, the /p/ sound always changes into /b/ following the /s/ sound.

Now this got me curious and I wondered: exactly what are the rules governing sound changes in English consonants? Can I learn them so I don’t make this mistake again? Native English speakers don’t know these rules (consciously at least), and even ESL materials don’t go into much detail about subtle aspects of pronunciation. The best resources for this would be linguistics textbooks on English phonology.

I consulted a textbook called “Gimson’s Pronunciation of English” [1]. For just the rules regarding sound changes of the /t/ sound at the word-final position, the book lists 6 rules. Here’s a summary of the first 3:

  • No audible release in syllable-final positions, especially before a pause. Examples: mat, map, robe, road. To distinguish /t/ from /d/, the preceding vowel is lengthened for /d/ and shortened for /t/.
  • In stop clusters like “white post” (t + p) or “good boy” (d + b), there is no audible release for the first consonant.
  • When a plosive consonant is followed by a nasal consonant that is homorganic (articulated in the same place), then the air is released out of the nose instead of the mouth (eg: topmost, submerge). However, this doesn’t happen if the nasal consonant is articulated in a different place (eg: big man, cheap nuts).

As you can see, the rules are quite complicated. The book is somewhat challenging for non-linguists — these are just the rules for /t/ at the word-final position; the book goes on to spend hundreds of pages to cover all kinds of vowel changes that occur in stressed and unstressed syllables, when combined with other words, and so on. For a summary, take a look at the Wikipedia article on English Phonology.

What’s really amazing is how native speakers learn all these patterns, perfectly, as babies. Native speakers may make orthographic mistakes like mixing up “their, they’re, there”, but they never make phonological mistakes like forgetting to de-aspirate the /p/ in “spin” — they simply get it right every time, without even realizing it!


Some of my friends immigrated to Canada at a similar or later age than me, and learned English with no noticeable accent. Therefore, people sometimes found it strange that I still have an accent. Even more interesting is the fact that although my pronunciation is non-native, I don’t make non-native grammatical mistakes. In other words, I can intuitively judge which sentences are grammatical or ungrammatical just as well as a native speaker. Does that make me a linguistic anomaly? Intrigued, I dug deeper into academic research.

In 1999, Flege et al. conducted a study of Korean-American immigrants who moved to the USA at an early age [2]. Each participant was given two tasks. In the first task, the participant was asked to speak a series of English sentences, and native speakers judged how much of a foreign accent was present on a scale from 1 to 9. In the second task, the participant was a list of English sentences, some grammatical and some not, and picked which ones were grammatical.

Linguists hypothesize that during first language acquisition, babies learn the phonology of their language long before they start to speak; grammatical structure is acquired much later. The Korean-American study seems to support this hypothesis. For the phonological task, immigrants who arrived as young as age 3 sometimes retained a non-native accent into adulthood.

3.pngAbove: Scores for phonological task decrease as age of arrival increases, but even very early arrivals retain a non-native accent.

Basically, arriving before age 6 or so increases the chance of the child developing a native-like accent, but by no means does it guarantee it.

On the other hand, the window for learning grammar is much longer:

4.pngAbove: Scores for grammatical task only start to decrease after about age 7.

Age of arrival is a large factor, but does not explain everything. Some people are just naturally better at acquiring languages than others. The study also looked at the effect of other factors like musical ability and perceived importance of English on the phonological score, but the connection is a lot weaker.

Language is so easy that every baby picks it up, yet so complex that linguists write hundreds of pages to describe it. Even today, language acquisition is poorly understood, and there are many unresolved questions about how it works.


References

  1. Cruttenden, Alan. “Gimson’s Pronunciation of English, 8th Edition”. Routeledge, 2014.
  2. Flege, James Emil et al. “Age Constraints on Second Language Acquisition”. Journal of Memory and Language, Issue 41, 1999.