I didn’t break the bed, the bed broke: Exploring semantic roles with VerbNet / FrameNet

Some time ago, my bed fell apart, and I entered into a dispute with my landlord. “You broke the bed,” he insisted, “so you will have to pay for a new one.”

Being a poor grad student, I wasn’t about to let him have his way. “No, I didn’t break the bed,” I replied. “The bed broke.”

bedbroke

Above: My sad and broken bed. Did it break, or did I break it?

What am I implying here? It’s interesting how this argument relies on a crucial semantic difference between the two sentences:

  1. I broke the bed
  2. The bed broke

The difference is that (1) means I caused the bed to break (eg: by jumping on it), whereas (2) means the bed broke by itself (eg: through normal wear and tear).

This is intuitive to a native speaker, but maybe not so obvious why. One might guess from this example that any intransitive verb when used transitively (“X VERBed Y”) always means “X caused Y to VERB“. But this is not the case: consider the following pair of sentences:

  1. I attacked the bear
  2. The bear attacked

Even though the syntax is identical to the previous example, the semantic structure is quite different. Unlike in the bed example, sentence (1) cannot possibly mean “I caused the bear to attack”. In (1), the bear is the one being attacked, while in (2), the bear is the one attacking something.

broke-attackAbove: Semantic roles for verbs “break” and “attack”.

Sentences which are very similar syntactically can have different structures semantically. To address this, linguists assign semantic roles to the arguments of verbs. There are many semantic roles (and nobody agrees on a precise list of them), but two of the most fundamental ones are Agent and Patient.

  • Agent: entity that intentionally performs an action.
  • Patient: entity that changes state as a result of an action.
  • Many more.

The way that a verb’s syntactic arguments (eg: Subject and Object) line up with its semantic arguments (eg: Agent and Patient) is called the verb’s argument structure. Note that an agent is not simply the subject of a verb: for example, in “the bed broke“, the bed is syntactically a subject but is semantically a patient, not an agent.

Computational linguists have created several corpora to make this information accessible to computers. Two of these corpora are VerbNet and FrameNet. Let’s see how a computer would be able to understand “I didn’t break the bed; the bed broke” using these corpora.

broke-verbnet

Above: Excerpt from VerbNet entry for the verb “break”.

VerbNet is a database of verbs, containing syntactic patterns where the verb can be used. Each entry contains a mapping from syntactic positions to semantic roles, and restrictions on the arguments. The first entry for “break” has the transitive form: “Tony broke the window“.

Looking at the semantics, you can conclude that: (1) the agent “Tony” must have caused the breaking event, (2) something must have made contact with the window during this event, (3) the window must have its material integrity degraded as a result, and (4) the window must be a physical object. In the intransitive usage, the semantics is simpler: there is no agent that caused the event, and no instrument that made contact during the event.

The word “break” can take arguments in other ways, not just transitive and intransitive. VerbNet lists 10 different patterns for this word, such as “Tony broke the piggy bank open with a hammer“. This sentence contains a result (open), and also an instrument (a hammer). The entry for “break” also groups together a list of words like “fracture”, “rip”, “shatter”, etc, that have similar semantic patterns as “break”.

broke-framenet

Above: Excerpt from FrameNet entry for the verb “break”.

FrameNet is a similar database, but based on frame semantics. The idea is that in order to define a concept, you have to define it in terms of other concepts, and it’s hard to avoid a cycle in the definition graph. Instead, it’s sometimes easier to define a whole semantic frame at once, which describes a conceptual situation with many different participants. The frame then defines each participant by what role they play in the situation.

The word “break” is contained in the frame called “render nonfunctional“. In this frame, an agent affects an artifact so that it’s no longer capable of performing its function. The core (semantically obligatory) arguments are the agent and the artifact. There are a bunch of optional non-core arguments, like the manner that the event happened, the reason that the agent broke the artifact, the time and place it happened, and so on. FrameNet tries to make explicit all of the common-sense world knowledge that you need to understand the meaning of an event.

Compared to VerbNet, FrameNet is less concerned with the syntax of verbs: for instance, it does not mention that “break” can be used intransitively. Also, it has more fine-grained categories of semantic roles, and contains a description in English (rather than VerbNet’s predicate logic) of how each semantic argument participates in the frame.

An open question is: how can computers use VerbNet and FrameNet to understand language? Nowadays, deep learning has come to dominate NLP research, so that VerbNet and FrameNet are often seen as relics of a past era, when people still used rule-based systems to do NLP. It turned out to be hard to use VerbNet and FrameNet to make computers do useful tasks.

But recently, the NLP community is realizing that deep learning has limitations when it comes to common-sense reasoning, that you can’t solve just by adding more layers on to BERT and feeding it more data. So maybe deep learning systems can benefit from these lexical semantic resources.

Directionality of word class conversion

Many nouns (like google, brick, bike) can be used as verbs:

  • Let me google that for you.
  • The software update bricked my phone.
  • Bob biked to work yesterday.

Conversely, many verbs (like talk, call) can be used as nouns:

  • She gave a talk at the conference.
  • I’m on a call with my boss.

Here, we just assumed that {google, brick, bike} are primarily nouns and {talk, call} are primarily verbs — but is this justified? After all, all five of these words can be used as either a noun or a verb. Then, what’s the difference between the first group {google, brick, bike} and the second group {talk, call}?

These are examples of word class flexibility: words that can be used across multiple part-of-speech classes. In this blog post, I’ll describe some objective criteria to determine if a random word like “sleep” is primarily a noun or a verb.

Five criteria for deciding directionality

Linguists have studied the problem of deciding what is the base / dominant part-of-speech category (equivalently, deciding the directionality of conversion). Five methods are commonly listed in the literature: frequency of occurrence, attestation date, semantic range, semantic dependency, and semantic pattern (Balteiro, 2007; Bram, 2011).

  1. Frequency of occurrence: a word is noun-dominant if it occurs more often as a noun than a verb. This is the easiest to compute since all you need is a POS-tagged corpus. The issue is the direction now depends on which corpus you use, and there can be big differences between genres.
  2. Attestation date: a word is noun-dominant if it was used first as a noun and only later as a verb. This works for newer words, Google (the company) existed for a while before anyone started “googling” things. But we run into problems with older words, and the direction then depends on the precise dating of Middle English manuscripts. If the word is from Proto-Germanic / Proto-Indo-European then finding the attestation date becomes impossible. This method is also philosophically questionable because you shouldn’t need to know the history of a language to describe its current form.
  3. Semantic range: if a dictionary lists more noun meanings than verb meanings for a word, then it’s noun-dominant. This is not so reliable because different dictionaries disagree on how many senses to include, and how different must two senses be in order to have separate entries. Also, some meanings are rare or domain specific (eg: “call option” in finance) and it doesn’t seem right to count them equally.
  4. Semantic dependency: if the definition of the verb meaning refers to the noun meaning, then the word is noun-dominant. For example, “to bottle” means “to put something into a bottle”. This criterion is not always clear to decide, sometimes you can define it either way, or have neither definition refer to the other.
  5. Semantic pattern: a word is noun-dominant if it refers to an entity / object, and verb-dominant if refers to an action. A bike is something that you can touch and feel; a walk is not. Haspelmath (2012) encourages distinguishing {entity, action, property} rather than {noun, verb, adjective}. However, it’s hard to determine without subjective judgement (especially for abstract nouns like “test” or “work”), whether the entity or action sense is more primary.

Comparisons using corpus methods

How do we make sense of all these competing criteria? To answer this question, Balteiro (2007) compare 231 pairs of flexible noun/verb pairs and rated them all according to the five criteria I listed above, as well as a few more that I didn’t include. Later, Bram (2011) surveyed a larger set of 2048 pairs.

The details are quite messy, because applying the criteria are not so straightforward. For example, polysemy: the word “call” has more than 40 definitions in the OED, and some of them are obsolete, so which one do you use for attestation date? How do you deal with homonyms like “bank” that have two unrelated meanings? With hundreds of pages of painstaking analysis, the researchers came to a judgement for each word. Then, they measured the agreement between each pair of criteria:

bram-thesis-tableTable of pairwise agreement (adapted from Table 5.2 of Bram’s thesis)

There is only a moderate level of agreement between the different criteria, on average about 65% — better than random, but not too convincing either. Only frequency and attestation date agree more than 80% of the time. Only a small minority of words have all of the criteria agree.

Theoretical ramifications

This puts us in a dilemma: how do we make sense of these results? What’s the direction of conversion if these criteria don’t agree? Are some of the criteria better than others, perhaps take a majority vote? Is it even possible to determine a direction at all?

Linguists have disagreed for decades over what to do with this situation. Van Lier and Rijkhoff (2013) gives a survey of the various views. Some linguists maintain that flexible words must be either noun-dominant or verb-dominant, and is converted to the other category. Other linguists note the disagreements between criteria and propose instead that words are underspecified. Just like a stem cell that can morph into a skin or lung cell as needed, a word like “sleep” is neither a noun or verb, but a pre-categorical form that can morph into either a noun or verb depending on context.

Can we really determine the dominant category of a conversion pair? It seems doubtful that this issue will ever be resolved. Presently, none of the theories make any scientific predictions that can be tested and falsified. Until then, the theories co-exist as different ways to view and analyze the same data.

The idea of a “dominant” category doesn’t exist in nature, it is merely an artificial construct to help explain the data. In mathematics, it’s nonsensical to ask if imaginary numbers really “exist”. Nobody has seen an imaginary number, but mathematicians use them because they’re good for describing a lot of things. Likewise, it doesn’t make sense to ask if flexible words really have a dominant category. We can only ask whether a theory that assumes the existence of a dominant category is simpler than a theory that does not.

References

  1. Balteiro, Isabel. The directionality of conversion in English: A dia-synchronic study. Vol. 59. Peter Lang, 2007.
  2. Bram, Barli. “Major total conversion in English: The question of directionality.” (2011). PhD Thesis.
  3. Haspelmath, Martin. “How to compare major word-classes across the world’s languages.” Theories of everything: In honor of Edward Keenan 17 (2012): 109-130.
  4. Van Lier, Eva, and Jan Rijkhoff. “Flexible word classes in linguistic typology and grammatical theory.” Flexible word classes: a typological study of underspecified parts-of-speech (2013): 1-30.