# Is 2011 a special number?

Today is the first day of the year 2011. 2011 is a prime number. Not only that, but according to numerous math bloggers and twitterers on the internet, 2011 is the sum of 11 consecutive primes — that is, 2011 = 157 + 163 + 167 + 173 + 179 + 181 + 191 + 193 + 197 + 199 + 211. Furthermore (as I already said), 2011 is prime.

Naturally I wonder, how rare are these numbers — numbers that are prime but also a sum of a bunch of consecutive primes? This seems like a problem easily solved with some programming.

Let us write P(n,k) as the number of primes less than or equal to n that can be written as a sum of at least k consecutive primes. How big is P(2011,k) compared to $\pi(2011) = 305$, the number of primes less than or equal 2011?

My method for computing P(n,k) is pretty simple. First we start with a list of prime numbers, then write the cumulative sums for the prime numbers (these images were taken with my laptop camera off a whiteboard):

Next take every pair from the bottom list, and find their differences:

Because of the way I arranged the numbers, we can see that the bottom diagonal are all the numbers that can be written as a sum of 1 prime (obviously, the prime numbers), then the next row are all numbers that can be written as a sum of 2 primes, and so on. If we want to compute P(n,k) we simply list enough prime numbers to complete this table, take everything above a diagonal, and filter out all the duplicates.

Here’s my hopefully correct implementation:

import java.util.*;
import java.lang.*;

class Main
{
public static void main (String[] args) throws java.lang.Exception
{
int LIM = 2011;
int NCONSEC = 3;
boolean[] sieve = new boolean[LIM+1];
Arrays.fill(sieve, true);
for(int i=2; i<=LIM; i++){
if(!sieve[i]) continue;
for(int j=2; j*i<=LIM; j++)
sieve[i*j] = false;
}

List<Integer> primes = new ArrayList<Integer>();
for(int i=2; i<=LIM; i++)

List<Integer> cuml = new ArrayList<Integer>();
int cum = 0;
for(int p : primes){
cum += p;
}

Set<Integer> consums = new TreeSet<Integer>();
for(int i=1; i<cuml.size(); i++){
for(int j=0; j<=i-NCONSEC; j++)
}

int p = 0;
for(int i : consums){
if(i > LIM) break;
if(!sieve[i]) continue;
//System.out.println(i);
p++;
}

System.out.println(p);
}
}


It turns out that P(2011,3) = 147 and since there are 305 primes less or equal to 2011, roughly half of all primes under 2011 can be written as a sum of at least 3 consecutive primes. Hardly a special number at all! Even if we insist on a list of 11 consecutive primes, there are still 56 primes less than or equal to 2011 that can be written as a sum of 11 consecutive primes, about 1 in every 5 primes.

Happy New Year!

## 2 thoughts on “Is 2011 a special number?”

1. st0le says:

Hey, Lucky…Your sieve can be faster…

 for(int i=2; i<=LIM; i++){ if(!sieve[i]) continue; for(int j=i*i; j<=LIM; j+=i) sieve[j] = false; } 

Which avoid Multiplication….

 //assuming u took care of factors of 2 for(int i=3; i<=LIM; i+=2){ if(!sieve[i]) continue; for(int j=i*i; j<=LIM; j+=2*i) //'evens' already taken care of. sieve[j] = false; } 

2. jiya says:

good one!