Minimum quadrilateral inscribed in a square

May 6, 2012

A problem that I’ve seen lately reduces to the following problem:

We have a square, and we put a point on each side of the square. Then we connect the four points to create a quadrilateral. How can we make this quadrilateral have the smallest possible perimeter?

Intuitively, you may believe that this natural, obvious configuration should produce the least perimeter:

Attempt with Calculus

How can we prove that this indeed gives us the smallest possible perimeter?

A first attempt might be to give variables to the side lengths, and somehow find the minimum perimeter using algebra and calculus tools. So there are four independent points — let’s parameterize them with four variables, and assume the side length of the square is 1:

Then we want to minimize this expression:

\sqrt{a^2+(1-d)^2} + \sqrt{b^2+(1-a)^2}+ \sqrt{c^2+(1-b)^2}+ \sqrt{d^2+(1-c)^2}

At this point, it isn’t clear how to proceed — there doesn’t seem to be any way to minimize this expression of four variables.

Proof by Net

We’ll have to try something different. It’s hard to make sense of anything when there are four independent variables. Instead, if we expand things out a bit, things start to become more manageable:

What we did was reflect the square three times, and each time the square is reflected, the inscribed quadrilateral goes with it. By taking only the relevant parts of the quadrilateral, we get the green path.

Now we might have a solution. If we had a different green path, can we reverse the steps and get the original quadrilateral back? Basically, the following requirements have to be met:

  • The path has to cross all three of the internal lines BC, BA, and DA.
  • The path’s position on the bottom-most line, DC must be the same when reflected onto the top-most line DC.

With these requirements in mind, the shortest green path that satisfies these requirements is a straight line connecting a point on the bottom left to its reflected point on the top right:

Our intuition at the start was well-founded.

Now notice that this isn’t the only possible shortest path. If we move the entire green line to the left or right, we get a different path of the same length!

For instance, the degenerate ‘quadrilateral’ formed by connecting two opposite corners has the same perimeter as the one we get by connecting the midpoints. Neat, huh?

Understanding Harmonic Conjugates (sort of)

January 7, 2012

For many people (for me at least), the Harmonic Conjugate is a difficult concept to understand. I didn’t really get it the first time I saw it, at Mathcamp. Let’s take the definition of the harmonic conjugate:

AB and CD are harmonic conjugates if this equation holds:

\frac{AC}{BC} = \frac{AD}{BD}

If you’re like me, you’re thinking along the lines of “But why? Why is this defined this way? Why would we spend so much time proving things about this weird concept? What’s the point, what’s the use?”

Even now, I can’t really give you an intuitive¬†explanation of why this equality is so important. On the other hand, I could certainly come up with a few problems in which the concept of the harmonic conjugate turns to be useful.

Apollonius and Fleeing Ships

Apollonius’s problem was this: you are in control of a ship (point A on diagram), and you are in pursuit of another ship (point B). The other ship is fleeing in a straight line in some direction:

Your speed is (obviously) faster than the speed of the other ship: say they’re going at 30 km/h and you’re going at 50 km/h. Additionally, your ship is required to go in a straight line.

In which direction should you set off in order to intercept the fleeing ship?

Solution with Harmonic Conjugates

The first step of the solution is to construct harmonic conjugates CD so that their ratio is the ratio of your speed to the other ship’s speed (we’ll prove later that this is actually possible; assume we can do this for now):

\frac{AC}{BC} = \frac{AD}{BD} = \frac{5}{3}

Next, draw a circle with diameter CD:

There is a point where the ray from B (their ship) intersects this circle. Now go to this point immediately, in a straight line: the ship will be there.

The Proof

In order to prove that this works, we’ll need to take a step back and look at how we constructed the points C and D. The solution turns out to be evident directly from the construction of the harmonic conjugates.

Again, let’s assume our desired ratio is 5/3. Starting with the points A and B, the first step is constructing some point P so that:

\frac{AP}{BP} = \frac{5}{3}

This is fairly easy to do. Draw a circle of radius 5 around A, and draw a circle of radius 3 around B — the intersection P of these two circles forms the correct ratio. (if the circles don’t intersect, just scale everything up and try again)

Next, dropping the internal and external angle bisectors of the new triangle gives the harmonic conjugates C and D:

Why angle bisectors? From the angle bisector theorems (which I won’t prove here):

\frac{AP}{BP} = \frac{AC}{BC} = \frac{5}{3}

\frac{AP}{BP} = \frac{AD}{BD} = \frac{5}{3}

Combining the two proves that C and D are indeed harmonic conjugates to AB.

As a corollary, notice that because of angle bisecting, the angle CPD is always a right angle — hence, the locus of all points P forms a circle with diameter CD.

Returning to the ship problem, since each point P is defined as a point so that \frac{AP}{BP} = \frac{5}{3} , it follows that when both ships travel to such a point P, they will meet at the same time.

Calculating the Plane Angles of Platonic Solids

October 11, 2011

What is the angle between two planes of a tetrahedron?

The angle between any two edges of the tetrahedron is 60^\circ, so it’s easy to (falsely) conclude that the angle between two faces must also be 60^\circ.

But this isn’t the case: the plane angle is defined as the angle between two lines on the two planes that are both perpendicular to the edge. None of the edges in a tetrahedron is perpendicular to any other, so the answer of 60^\circ is invalid.

We can try to compute the angle using regular Euclidean solid geometry, but things tend to get messy. A different way to approach the problem is by using vector geometry: using vector methods we can easily calculate the plane angle of the tetrahedron (as well as the icosahedron and the dodecahedron).

Assume symmetry. We represent three concurrent edges of the polyhedron as three vectors beginning at the same point: \vec a, \vec b, and \vec c; let \alpha and \beta be the angles between the vectors (by symmetry we’re assuming that the two alpha’s are equal):
(in case my poor drawing skills does not make this apparent, vectors a and b form one face of the polyhedron and c and b form another face)

For simplicity, let’s also say the lengths of each of the three vectors is 1.

We want to compute the angle between the plane formed by \vec a and \vec c, and the plane formed by \vec b and \vec c. Hence let \vec x and \vec y be the perpendiculars to \vec a and \vec b respectively each ending at the same point as their respective vectors:

For any two vectors, the dot product is defined \vec a \cdot \vec b = |\vec a| |\vec b| \cos \theta with \theta being the angle between the vectors. Given that the lengths of the vectors are all 1, we have:

\vec a \cdot \vec c = \vec b \cdot \vec c = \cos \alpha

\vec a \cdot \vec b = \cos \beta

Also, by vector addition:

\vec c \cos \alpha + \vec x = \vec a

\vec c \cos \alpha + \vec y = \vec b

Hence \vec x = \vec a - \vec c \cos \alpha and \vec y = \vec b - \vec c \cos \alpha.

We want to find the angle between \vec x and \vec y — call this angle \theta. Then

\vec x \cdot \vec y = |\vec x| |\vec y| \cos \theta

The dot product of vectors x and y is simply:

\begin{array}{l} (\vec a - \vec c \cos \alpha) \cdot (\vec b - \vec c \cos \alpha) \\ = (\vec a - \vec c (\vec a \cdot \vec c)) \cdot (\vec b - \vec c (\vec b \cdot \vec c)) \\ = \vec a \cdot \vec b - (\vec a \cdot \vec c) (\vec b \cdot \vec c) \\ = \cos \beta - \cos^2 \alpha \end{array}

Additionally |\vec x| = |\vec y| = \sin \alpha. Hence the cosine of the angle is:

\cos \theta = \frac{\vec x \cdot \vec y}{|\vec x| |\vec y|} = \frac{\cos \beta - \cos^2 \alpha}{\sin^2 \alpha}

We can now use this newly derived formula to calculate plane angles! For example…


In the tetrahedron, both \alpha and \beta are 60:
So \cos \theta = \frac{\cos 60 - \cos^2 60}{\sin^2 60} = \frac{1}{2}  and \theta = \arccos \frac{1}{3} = 70.8^\circ.


In the icosahedron, \alpha = 60 but \beta = 108:
The top ‘cap’ is a regular pentagon, which has a vertex angle of 108; each side of the pentagon constitutes a side of an equilateral triangle. Since \cos 108 = \frac{1}{4} (1-\sqrt{5}), \cos \theta = \frac{\cos 108 - \cos^2 60}{\sin^2 60} = -\frac{\sqrt{5}}{3} , and \theta = \arccos (-\frac{\sqrt{5}}{3}) = 138.2^\circ.


Computing angles for the dodecahedron works a bit differently from the tetrahedron and icosahedron. Instead of using existing edges as vectors, we construct an equilateral triangle by connecting three vertices:

So \alpha = 36 (since it’s part of a regular pentagon) and \beta = 60. Then \cos \theta = \frac{\cos^2 60 - \cos^2 36}{\sin^2 36} and \theta = 116.6^\circ.

Varignon’s theorem proved in one line with vectors

September 6, 2011

Today I was reading some math book when the author mentions Varignon’s theorem, and gives a proof. The proof was not very long, but it was somewhat confusing. On Wikipedia, several more short proofs were given, but they were all more confusing than need be.

I remembered seeing the theorem proven using vector geometry before, but I couldn’t find the text (nor any other page / book that proves it this way) –

[image shamelessly taken from Wikipedia]

Varignon’s theorem states that in any quadrilateral, if we join the midpoints of the sides, then we get a parallelogram.

In the diagram, it suffices to prove that vector HG is equal to vector EF — vectors must have both the same orientation and length to be equal. This works since any method that proves HG = EF can also prove HE = GF. The proof goes as follows –

\vec {HG} = \vec{HD} + \vec{DG} = \frac{1}{2} (\vec{AD} + \vec{DC}) = \frac{1}{2} \vec{AC} = \vec{EF}

And we’re done. (the last step is due to symmetry of HG and EF)

Problem 10 of the 2011 Euclid Math Contest (remix)

April 14, 2011

I wrote the Euclid contest this year two days ago, on tuesday. There were 10 problems, and the tenth problem was a nice geometry problem. Three subproblems with a nice neat triangle on the right, with the subproblems getting progressively harder and harder. As I proceeded with the problem, I couldn’t help but imagine it as a Project Euler problem — instead of finding one such integer triangle, it would ask you to find the sum of the perimeters of all such integer triangles with perimeter less than 10^12 or some large number.

A modified problem

In the above diagram, \angle CAK = 2 \angle KAB and \angle ABC = 2 \angle KAB. Let a = CB, b = AC, c = AB, d = AK, and x = KB. Write an algorithm to find triangles satisfying these conditions where a, b, c are all integers.

Similar triangles

It is difficult to try to find integer triangles with such strange requirements as these. It seems that the line AK is completely unnecessary, but if we take it out, there doesn’t seem to be any way to relate the angle ratios to integer side lengths.

We can prove that \triangle CAK is similar to \triangle ABC. Being an exterior angle, CKA = 3 \theta, and also \angle CAB = 3 \theta. Both of the triangles have an angle of measure 2 \theta and another angle of measure 3 \theta, thus they are similar.

From the similar triangles ratio

\frac{b}{d} = \frac{a}{c}

We can write d in terms of the three sides of the triangle:

d = \frac{bc}{a}

Similarly, the side CK can be written as a-x. Then we have the ratio

\frac{a}{b} = \frac{b}{a-x}

Solving for x allows us to express it in terms of the three sides of the triangle, again:

x = \frac{a^2 - b^2}{a}

Constructing another similar triangle

Our goal here is to relate the lengths a, b, c with a simple equation, which then the problem turns into a number theory problem. Since we can write the lengths d and x in terms of a, b, and c, we can also relate any of a, b, c, d, x in an equation.

Again, there doesn’t seem to be a way to relate all of the variables together, in a way that any solution implies the original angle ratio required — unless we make a construction.

Here we extend AB to F, so that KB = BF and \triangle KBF is an isosceles triangle.

Again, since the exterior angle here is 2 \theta, both \angle BKF = \angle BFK = \theta. Also with this construction, \triangle AKF \sim \triangle KBF, and is also isosceles, hence d = AK = KF.

With this construction, we can write the ratio

\frac{x}{d} = \frac{d}{c+x}

Perfect! Cross multiplying and then substituting in the original sides of the triangles gives

(\frac{a^2-b^2}{a})(c+\frac{a^2-b^2}{a}) = (\frac{bc}{a})^2

Simplifying this gives

(a^2 - b^2) (a^2 - b^2 + ac) = b^2 c^2

Number theory magic

Now that we have an equation relating the three side lengths — it’s easy to verify that any three integers satisfying the triangle inequality gives a triangle with the required conditions — we can use number theory to try to generate integers that fit the equation.

If we expand the equation, we get

a^4+a^3 c-2 a^2 b^2-a b^2 c+b^4-b^2 c^2 = 0

It makes sense to solve for c, which can be done using just the quadratic formula:

c = \frac{a^3 - ab^2 \pm \sqrt{(ab^2-a^3)^2 + 4b^2(b^4 + a^4 - 2a^2 b^2)}}{2b^2}

We need the discriminant D — the expression inside the square root — to be a perfect square, where we are allowed to have integer values for a and b. If we can get D to be a perfect square, then c will turn out to be a rational number. Then multiplying all three variables by a constant gives integer values for all three.

So we defined D:

D = (ab^2-a^3)^2 + 4b^2(b^4 + a^4 - 2a^2 b^2)

Expanding this gives

D = a^6 - 7a^2 b^4 + 2 a^4 b^2 + 4b^6

Fortunately, this expression has an interesting factorization:

D = (a^2+4b^2) (a+b)^2 (a-b)^2

Or we can also write

\sqrt{D} = (a+b) (a-b) \sqrt{a^2 + 4b^2}

We’ve simplified this problem to finding values where a^2 + 4b^2 is a perfect square, that is:

a^2 + (2b)^2 = k^2

This is just finding Pythagorean triples where one of the two sides are even! For instance, in the triple (3,4,5), we have a=3 and b=2. However, substituting a=3, b=2 into the quadratic formula gives c=5. This is almost a solution, only that the sides have to satisfy the triangle inequality (two sides have to add up to more than the third side).

The next Pythagorean triple (5,12,13) gives a=5 and b=6. Substituting this in gives c=11/9, which does satisfy the triangle inequality. Multiplying everything by 9 gives a=45, b=54, c=11 as the smallest working combination.

With this method, it is possible to quickly find arbitrarily many such triples, using Pythagorean triples as a starting point (which can be generated quickly with known methods).

Rotating a Hyperbola

March 26, 2011

The equation of a hyperbola gives it some very interesting properties under a series of stretches. Consider the hyperbola xy=1:

If we stretch the hyperbola horizontally by a factor of 2 about the x axis — replacing x in the equation xy=1 with \frac{x}{2}, we have the equation xy=2.

Now, if we compress the resulting hyperbola vertically by a factor of 2 — replacing y in the equation xy=2 with 2y and simplifying, we get the original hyperbola, xy=1. So by a horizontal stretch followed by a vertical compression, we get the original hyperbola.

However, consider a point on the hyperbola xy=1, say (x,y). Stretching the hyperbola horizontally by a factor of 2, this point gets transformed to (2x,\frac{y}{2}). Even though each point has a different image point, however, the graph as a whole remains identical.

More generally, if we stretch by a factor of k instead of 2, where k is any positive number, we still obtain the original hyperbola after the two stretches. The point (x,y) gets transformed to the point (kx,\frac{y}{k}). We call this combinations of transformations a hyperbolic rotation. Intuitively, the points on the hyperbola are ‘rotated’ downwards.

There are some interesting things about the hyperbolic rotation. For one, by choosing the right k for the transformation, it is possible to transform any point on the hyperbola into any other point on the same arm of the hyperbola (by allowing k to be smaller than 1). Also, since the hyperbolic rotation is composed of two simple stretches, parallel lines as well as ratios of a line segments are preserved. The area of a figure is also preserved since one stretch reduces the area, while the other multiplies the area by the same amount.

With these facts, we can prove things about the hyperbola itself:

Theorem: Let P be a point on the hyperbola xy=1. Let l be the line passing through P tangent to the hyperbola. Let X be the intersection of l and the x-axis, and Y be the intersection of l with the y-axis. Prove that P is the midpoint of XY.

The proof is very simple with the hyperbolic rotation. Consider when P = (1,1). The theorem obviously holds here, because of symmetry. But by applying a hyperbolic rotation, we can transform the point (1,1) into any other point on the hyperbola. Since ratios between line segments don’t change with a hyperbolic rotation, P is always the midpoint, and we are done.

Calculus magic

February 20, 2011

You have probably seen some version of this curve at some time or another:

The blue lines are drawn by putting n evenly spaced points in the interval [0,1] for both the horizontal and vertical axis and connecting them.

As n approaches infinity, the question is, what is the area occupied by the blue lines? The area is clearly finite since the entire shape is bounded by a 1×1 square, but how much of that square is occupied?

Intuitively it might seem that the blue curve is a circle, however that intuition is wrong. In the above diagram, the red curve is the actual circle, and clearly the blue curve is outside the circle. But fortunately the area can be found with some calculus.

If we choose some point (a,0) on the x-axis, then obviously that point is connected to point (0,1-a) on the y-axis. The slope of this line is \frac{a-1}{a} and the equation of this line is y=\frac{a-1}{a}x+1-a. More conveniently, we can this expression as g(a,x), intuitively the line formed when we choose a as our x-axis point.

Let f(x) be the bounding curve for the blue lines. To find f(x), we want to choose the value a, given x, so that g(a,x) is maximized. To do this, we take the partial derivative \frac{\partial y}{\partial a}:

\frac{\partial y}{\partial a} = x(\frac{a-a+1}{a^2})-1=\frac{x}{a^2}-1

The optimal value of a is the one for which \frac{\partial y}{\partial a}=0, so solving for a we get a=\sqrt{x}. Then we have

f(x) = g(\sqrt{x},x) = x \frac{\sqrt{x}-1}{\sqrt{x}}+1-\sqrt{x}

f(x)= 1+x-2\sqrt{x}

Integrating f(x) from 0 to 1 gives us the answer:

\displaystyle \int_0^1 (1+x-2\sqrt{x}) dx = \frac{1}{6}


Get every new post delivered to your Inbox.

Join 71 other followers