The hockey stick theorem: an animated proof

An interesting theorem related to Pascal’s triangle is the hockey stick theorem or the christmas stocking theorem. This theorem states that the sum of a diagonal in Pascal’s triangle is the element perpendicularly under it (image from Wolfram Mathworld):

So here the sum of the blue numbers , 1+4+10+20+35+56, is equal to the red number, 126. It is easy to see why it’s called the hockey stick theorem – the shape looks like a hockey stick!

An alternative, algebraic formulation of the hockey stick theorem is follows:

\displaystyle\sum_{i=0}^{k} \binom{n+1}{i} = \binom{n+k+1}{k}

But this works in two ways, considering the symmetry of Pascal’s triangle. The flipped version would be:

\displaystyle\sum_{i=0}^{k} \binom{n+1}{n} = \binom{n+k+1}{n+1}

Using Pascal’s identity, it is fairly trivial to prove either identity by induction. Instead I present an intuitive, animated version of the proof:

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

Follow

Get every new post delivered to your Inbox.

Join 61 other followers

%d bloggers like this: